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COMMENT 

Comment on Goltsev’s stability analysis for the Parisi 
solution of the long-ranged spin glass model 

I Kondort and C De Dominicis$ 
+ Institute for Theoretical Physics, Eotvos University H-1088, Budapest, Hungary 
$ Service de Physique Thtorique, Centre d’Etudes Nucleaires, Saclay, 9 1  191 Gif-sur- 
Yvette, France 

Received 23 June 1983 

Abstract. Goltsev’s recent stability analysis for Parisi’s solution of the Sherrington- 
Kirkpatrick model is shown to be incorrect near T,, and also in disagreement with the 
analysis by the present authors. 

The question of stability is of crucial importance for the validity of the now widely 
accepted Parisi (1979, 1980) solution of the Sherrington-Kirkpatrick (1975) problem. 

The first, partial, test of stability near T,  was done by Thouless et a1 (1980). Next 
a complete stability analysis, but still confined to the neighbourhood of T,, appeared 
(De Dominicis and Kondor 1983), which was also extended to the case of the 
Sompolinsky (198 1) solution, displaying an identical fluctuation spectrum, and includ- 
ing a finite external field (Kondor and De Dominicis 1983). An independent calcula- 
tion by Goltsev (1983) for the Parisi case followed. This last paper contains partial 
results valid for all T < T,, which are based on a particular type of eigenfunction and 
do not constitute a complete analysis, but in the vicinity of T, it also gives a complete 
stability test, which can therefore be compared with ours. Our comments here concern 
this second half of Goltsev’s paper. 

First of all we have to point out a minor difference in convention. Both Goltsev 
and ourselves start with the same truncated free energy functional, but he gives the 
eigenvalues of the matrix of second derivatives, whereas we give the eigenvalues of 
twice the same matrix, hence all our eigenvalues should be twice his. (Our convention 
is chosen to let the eigenvalues become the free squared masses of a future field 
theory of spin glasses.) 

Both he and we find two continuous bands of eigenvalues: the band of small, 
O(T’), eigenvalues, and the band of large, O ( T ) ,  eigenvalues ( T  = (Tc-  T ) /Tc ) .  Our 
small eigenvalues span the range (0, 2 ~ ~ 1 ,  while his small eigenvalues, as given by his 
equation (3.181, span the same range, whereas in view of the factor 2 difference, they 
should span ( 0 , ~ ’ ) .  In fact, there is an obvious misprint in his equation (3.18): 
combining his equations (3.151, (3 .17~1,  (3.176) one immediately sees that in place 
of the factor 4 one should have a in his equation (3.18), which then brings the upper 
edge of the small band in the two calculations to agreement. 

As for the large eigenvalues, Goltsev’s equation (3.19) implies 
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We assert that this band is too narrow and somewhat too high. Indeed, consider the 
large eigenvalue in our ‘first family’ as given by equation (3) in  De  Dominicis and 
Kondor (1983). A trivial expansion to O ( r 2 )  yields A = 27 -$r2 + + . , which, taking 
proper account of the overall factor 2 difference, is seen to fall below the lower edge 
of Goltsev’s band. Now this particular eigenvalue (like the whole of our first family) 
was already implicit in Thouless et af (1980), see also de Almeida’s thesis (1980), and 
it was obtained by a method totally different from ours, which leaves little doubt 
about its being correct. 

The rest of our large eigenvalues can be obtained with equal ease from equations 
(7), (8), (11) in De Dominicis and Kondor (1983) and yield the band 

2r - $ 2  + 0(r3) S A  s 2T + f r 2 +  (2 )  

which is wider than Goltsev’s and does not overlap with it .  Furthermore, a study of 
the same equations shows that there are no other large eigenvalues in-the spectrum, 
all the other solutions fall below the upper edge of the small band. 

The root of this discrepancy can be traced back to Goltsev’s equation (3.10). This 
formula, as it  stands, cannot be right. It says that the determinant of the Hessian 
contains factors like 1 - D, (A ) where D, (A ) is some complicated expression defined in  
(3.12a), (3.126), but then the author determines the roots of the determinant from 
D,(A) = 0. Evidently, 1 - D, is a misprint then, and ha5 to be replaced probably by D, 
everywhere in (3.10). So doing one can at least reproduce the known spectrum for 
the replica symmetric case (q, = q ) ,  which is impossible otherwise. (Equation (3.10) 
in its original form does not even give the right number of roots). 

The question is now whether (3.10), corrected as proposed, can also produce the 
right spectrum if there is symmetry breaking. The simplest imaginable test is to 
consider a 4 x 4 order parameter matrix ( n  = 4) divided into 2 x 2 blocks ( m l  = 2, 
K = 1) with matrix elements q 1  in the off -diagonal blocks, qo in the diagonal ones. In 
fact Goltsev’s equation (3.7) should obviously contain (i,( =q, -qJ+l)  instead of q,, a 
misprint that crept in at the printer’s stage. The Hessian corresponding to this case is 

The notation conforms to Goltsev’s convention here. 

methods like his or ours. The spectrum is 
This matrix is trivial to diagonalise directly, i.e. without invoking any special 

2 40-T-ql 
A = /  - 7 - q i  

- T - q l ,  doubly degenerate, 2 

plus the two roots of 

(A + ~ + q i ) ( A  +7+q0+q: )=2q: .  

(4) 
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On the other hand, from Goltsev's equations (3.10 corrected), (3.11),  ( 3 . 1 2 ~ )  one 
obtains 

plus the roots of 

( A  + 7 + q i ) ( A  + 'T + q ~ + q : )  = 2qi .  

The difference between (4) and (5) shows that Goltsev's equation (3.10),  which is 
meant to contain the full spectrum of fluctuations around T,, is wrong. We note that 
the eigenvectors as described in  our paper lead to the correct spectrum, equation (4), 
in the test case above. 

To  conclude we point out that the discrepancies between Goltsev's spectrum and 
ours go far beyond some small quantitative differences. As a matter of fact, the 
agreement between his small band and ours is deceptive. Though the roots given by 
his equation (3.15) do belong to the spectrum and span, in the continuous case, the 
right range, they do not exhaust all the small eigenvalues. As described in our paper, 
the third family cannot be parametrised by a single continuous variable like in his 
equation (3.151, but takes three of them. (A special case of this, a two-parameter 
subfamily, has also been found by Sompolinsky and Zippelius (1983)  in a totally 
different approach.) From a field theoretic point of view this means that the free 
propagator of the theory will have a spectral function depending on three continuous 
labels, certainly a case of unprecedented complexity. The infrared behaviour of the 
theory may depend crucially on this feature. 
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